Parallel Solution of Cardiac Reaction-Diffusion Models
نویسندگان
چکیده
We present and study a parallel iterative solver for reaction-diffusion systems in three dimensions arising in computational electrocardiology, such as the Bidomain and Monodomain models. The models include intramural fiber rotation and anisotropic conductivity coefficients that can be fully orthotropic or axially symmetric around the fiber direction. These cardiac models are coupled with a membrane model for the ionic currents, consisting of a system of ordinary differential equations. The solver employs structured isoparametric Q1 finite elements in space and a semi-implicit adaptive method in time. Parallelization and portability are based on the PETSc parallel library and large-scale computations with up to O(10) unknowns have been run on parallel computers. These simulation of the full Bidomain model (without operator or variable splitting) for a full cardiac cycle are, to our knowledge, among the most complete in the available literature.
منابع مشابه
A numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملA Filtering technique for System of Reaction Diffusion equations
We present here a fast parallel solver designed for a system of reaction convection diffusion equations. Typical applications are large scale computing of air quality models or numerical simulation of population models where several colonies compete. Reaction-Diffusion systems can be integrated in time by point-wise Newton iteration when all space dependent terms are explicit in the time integr...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملA Framework for Exploring Numerical Solutions of Advection- Reaction-Diffusion Equations Using a GPU-Based Approach
In this paper we describe a general purpose, graphics processing unit (GP-GPU)-based approach for solving partial differential equations (PDEs) within advection-reactiondiffusion models. The GP-GPU-based approach provides a platform for solving PDEs in parallel and can thus significantly reduce solution times over traditional CPU implementations. This allows for a more efficient exploration of ...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کامل